403,270 research outputs found

    The role of stellar collisions for the formation of massive stars

    Full text link
    We use direct N-body simulations of gas embedded star clusters to study the importance of stellar collisions for the formation and mass accretion history of high-mass stars. Our clusters start in virial equilibrium as a mix of gas and proto-stars. Proto-stars then accrete matter using different mass accretion rates and the amount of gas is reduced in the same way as the mass of stars increases. During the simulations we check for stellar collisions and we investigate the role of these collisions for the build-up of high-mass stars and the formation of runaway stars. We find that a significant number of collisions only occur in clusters with initial half-mass radii r_h < 0.1 pc. After emerging from their parental gas clouds, such clusters end up too compact compared to observed young, massive open clusters. In addition, collisions lead mainly to the formation of a single runaway star instead of the formation of many high mass stars with a broad mass spectrum. We therefore conclude that massive stars form mainly by gas accretion, with stellar collisions only playing a minor role if any at all. Collisions of stars in the pre-main sequence phase might however contribute to the formation of the most massive stars in the densest star clusters and possibly to the formation of intermediate-mass black holes with masses up to a few 100 Msun.Comment: 10 pages, 8 figures, MNRAS in pres

    The hierarchical formation of a stellar cluster

    Full text link
    Recent surveys of star forming regions have shown that most stars, and probably all massive stars, are born in dense stellar clusters. The mechanism by which a molecular cloud fragments to form several hundred to thousands of individual stars has remained elusive. Here, we use a numerical simulation to follow the fragmentation of a turbulent molecular cloud and the subsequent formation and early evolution of a stellar cluster containing more than 400 stars. We show that the stellar cluster forms through the hierarchical fragmentation of a turbulent molecular cloud. This leads to the formation of many small subclusters which interact and merge to form the final stellar cluster. The hierarchical nature of the cluster formation has serious implications in terms of the properties of the new-born stars. The higher number-density of stars in subclusters, compared to a more uniform distribution arising from a monolithic formation, results in closer and more frequent dynamical interactions. Such close interactions can truncate circumstellar discs, harden existing binaries, and potentially liberate a population of planets. We estimate that at least one-third of all stars, and most massive stars, suffer such disruptive interactions.Comment: 6 pages, 4 figures, accepted for publication in MNRAS. Version including hi-res colour postscript figure available at http://star-www.st-and.ac.uk/~sgv/ps/clufhier.ps.g

    The Effect of Dark Matter on the First Stars: A New Phase of Stellar Evolution

    Full text link
    Dark matter (DM) in protostellar halos can dramatically alter the current theoretical framework for the formation of the first stars. Heat from supersymmetric DM annihilation can overwhelm any cooling mechanism, consequently impeding the star formation process and possibly leading to a new stellar phase. The first stars to form in the universe may be ``dark stars''; i.e., giant (larger than 1 AU) hydrogen-helium stars powered by DM annihilation instead of nuclear fusion. Possibilities for detecting dark stars are discussed.Comment: 3 pages, 2 figures, Proceedings for First Stars 2007 Conference in Santa Fe, NM, July 200

    What Sets the Initial Rotation Rates of Massive Stars?

    Get PDF
    The physical mechanisms that set the initial rotation rates in massive stars are a crucial unknown in current star formation theory. Observations of young, massive stars provide evidence that they form in a similar fashion to their low-mass counterparts. The magnetic coupling between a star and its accretion disk may be sufficient to spin down low-mass pre-main sequence (PMS) stars to well below breakup at the end stage of their formation when the accretion rate is low. However, we show that these magnetic torques are insufficient to spin down massive PMS stars due to their short formation times and high accretion rates. We develop a model for the angular momentum evolution of stars over a wide range in mass, considering both magnetic and gravitational torques. We find that magnetic torques are unable to spin down either low or high mass stars during the main accretion phase, and that massive stars cannot be spun down significantly by magnetic torques during the end stage of their formation either. Spin-down occurs only if massive stars' disk lifetimes are substantially longer or their magnetic fields are much stronger than current observations suggest.Comment: 12 pages, 10 figures, Accepted for publication in Ap

    Triggered Star Formation by Massive Stars

    Full text link
    We present our diagnosis of the role that massive stars play in the formation of low- and intermediate-mass stars in OB associations (the Lambda Ori region, Ori OB1, and Lac OB1 associations). We find that the classical T Tauri stars and Herbig Ae/Be stars tend to line up between luminous O stars and bright-rimmed or comet-shaped clouds; the closer to a cloud the progressively younger they are. Our positional and chronological study lends support to the validity of the radiation-driven implosion mechanism, where the Lyman continuum photons from a luminous O star create expanding ionization fronts to evaporate and compress nearby clouds into bright-rimmed or comet-shaped clouds. Implosive pressure then causes dense clumps to collapse, prompting the formation of low-mass stars on the cloud surface (i.e., the bright rim) and intermediate-mass stars somewhat deeper in the cloud. These stars are a signpost of current star formation; no young stars are seen leading the ionization fronts further into the cloud. Young stars in bright-rimmed or comet-shaped clouds are likely to have been formed by triggering, which would result in an age spread of several megayears between the member stars or star groups formed in the sequence.Comment: 2007, ApJ, 657, 88

    Star formation environments and the distribution of binary separations

    Get PDF
    We have carried out K-band speckle observations of a sample of 114 X-ray selected weak-line T Tauri stars in the nearby Scorpius-Centaurus OB association. We find that for binary T Tauri stars closely associated to the early type stars in Upper Scorpius, the youngest subgroup of the OB association, the peak in the distribution of binary separations is at 90 A.U. For binary T Tauri stars located in the direction of an older subgroup, but not closely associated to early type stars, the peak in the distribution is at 215 A.U. A Kolmogorov-Smirnov test indicates that the two binary populations do not result from the same distibution at a significance level of 98%. Apparently, the same physical conditions which facilitate the formation of massive stars also facilitate the formation of closer binaries among low-mass stars, whereas physical conditions unfavorable for the formation of massive stars lead to the formation of wider binaries among low-mass stars. The outcome of the binary formation process might be related to the internal turbulence and the angular momentum of molecular cloud cores, magnetic field, the initial temperature within a cloud, or - most likely - a combination of all of these. We conclude that the distribution of binary separations is not a universal quantity, and that the broad distribution of binary separations observed among main-sequence stars can be explained by a superposition of more peaked binary distributions resulting from various star forming environments. The overall binary frequency among pre-main-sequence stars in individual star forming regions is not necessarily higher than among main-sequence stars.Comment: 7 pages, Latex, 4 Postscript figures; also available at http://spider.ipac.caltech.edu/staff/brandner/pubs/pubs.html ; accepted for publication in ApJ Letter
    • 

    corecore